InBody s10

Nació para el uso en Unidades de Cuidados Intensivos(UCI) y nefrología

Especificaciones

Método Segmental Directo de Análisis de

Impedancia Bioeléctrica de Multi-frecuencia

Frecuencias 1kHz, 5kHz, 50kHz, 250hHz, 500kHz,1000kHz

Base de Datos 100,000

Hoja de Resultados A4(Composición Corporal, Agua Corporal),

Ticket Térmico

Modo de Postura Postura Acostada, Sentada, De pie

Modo de Diálisis Antes, Durante, Después de Diálisis

Tipo de Electrodos Tipo Táctil, Tipo Adhesivo

Peso/Dimensión $2 \text{ kg} / 202 \times 322 \times 53 \text{ m}$

Rango de Edad 3 - 99 años

Rango de Peso 10 - 250 kg

Rango de Estatura 95 – 220 cm

Interfaz Externa Cable USB, RS-232C

Aplicación

- · Centros de Cáncer
- · Clínicas de Linfedema
- · Diálisis
- · Nefrología
- · Nutrición Clínica
- · Cirugía General
- · Medicina de Rehabilitación
- · Unidades de Ciudados Intensivos
- · Pediatría
- · Cirugía Torácica

Aparatos Adicionales / Accesorios

► Impresora Térmica

► Carrito

▶ Maletín Portátil

[InBodyS10]

InBody

IDAlturaEdadSexoFecha & Hora de la pruebaJane Doe156.9cm51Female2016.05.04.09:46

TEL: 02-501-3939 FAX: 02-578-2716

Composición del Agua Corporal

		E	Bajo		Norma				Al	to			
ACT Agua Corporal Total	(L)	40	60	90	■ 27.5	110	140	160	180	200	220	240	96
AIC Agua Intracelular	(L)	40	60	90 1	6.6	110	140	160	180	200	220	240	96
AEC Agua Extracelular	(L)	70	80	90	=100 =10.	9 110	120	130	140	150	160	170	96

Análisis de Agua Corporal

	:	Bajo	1	Norma				Al	to		
AFOIACT	0.320	0.340	0.360	0.380	0.390	0.400	0.410	0.420	0.430	0.440	0.450
AEC/ACT						■ 0.39	97				

Análisis de Agua por Segmento

1 kindiisis de	1150	a por c	Sin	icito								
		Bajo		Norma				Al	to			
Brazo Derecho (I	L) 4	0 60	80	= 1.4	2 120	140	160	180	200	220	240	%
Brazo Izquierdo (I	L) 4	0 60	80	■ 1.36	120	140	160	180	200	220	240	96
Tronco (I	L) 70	0 80	90	100	.6	120	130	140	150	160	170	96
Pierna Derecha (I	L) 70	0 80	9 0 4 .	13 100	110	120	130	140	150	160	170	%
Pierna Izquierda (I	L) 70	0 80	90 4.	10	110	120	130	140	150	160	170	96

Análisis de Tasa AEC por Segmento

Alto	-0.43 -0.42 -0.41		0.208	0.401	0.403
Ligeramente Alto	0.00		-		
Normal	0.38				
	Brazo Dere	cho Brazo Izquierdo	Tronco	Pierna Derecha	Pierna Izquierda

Historia de Composición del Agua Corporal

Peso	(kg)	65.3	63.9	62.4	61.8	62.3	60.9	60.5	59.1
ACT Agua Corporal Total	(L)	28.3	28.0	28.0	27.9	27.9	27.6	27.8	27.5
AIC Agua Intracelular	(L)	17.0	16.9	16.9	16.8	16.8	16.7	16.7	16.6
AEC Agua Extracelular	(L)	11.3	11.1	11.1	11.0	11.1	10.9	11.1	10.9
AEC/ACT		0.399	0.398	0.396	0.396	0.397	0.396	0.398	0.397
▼ Reciente □	Гotal	15.10.10 09:15	15.10.30 09:40	15.11.02 09:35	15.12.15 11:01	16.01.12 08:33	16.02.10 15:50	16.03.15 08:35	16.05.04 09:46

Análisis de Composición Corporal-

Proteínas	7.2 kg	$(7.0 \sim 8.6)$
Minerales	2.63 kg	$(2.44 \sim 2.98)$
Masa Grasa Corporal	21.8 kg	(10.3 ~ 16.5)
Masa Libre de Grasa	37.3 kg	$(35.8 \sim 43.7)$
Contenido Mineral Óseo	2.18 kg	$(2.01 \sim 2.45)$

Análisis de Músculo-Grasa

Peso	59.1 kg	$(43.9 \sim 59.5)$
Masa de Músculo Esquelético	19.6 kg	(19.5~23.9)
Masa Magra	35.1 kg	$(33.8 \sim 41.4)$
Masa Grasa Corporal	$21.8 \mathrm{kg}$	$(10.3 \sim 16.5)$

Análisis de Obesidad

IMC	$24.0 \text{ kg/m}^2 (18.5 \sim 25.0)$
PGC	36.9% (180~280)

Control de agua

AEC/ACT 0.385	- 0.51L / 58.6kg
AEC/ACT 0.395	- 0.06L / 59.0kg
AEC/ACT 0.405	+0.40L / 59.5 kg

*El elemento control de agua muestra el nivel de agua a ser controlado en base a la proporción de agua extracelular. Este elemento muestra el nivel de agua, que varía cuando la proporción de agua extracelular se establece de manera distinta de acuerdo a la presencia o ausencia de complicaciones, como se describe en un documento de la publicación de 2008 de la Sociedad japonesa de terapia con diálisis (Japan Society for Dialysis Therapy, JSDT).

Parámetros de Investigación -

Tasa Metabólica Básal	1176 kcal	
Área de Grasa Visceral	121.5 cm ²	
Masa Celular Corporal	23.8 kg	(23.4~28.6)
Circunferencia del Brazo	30.2 cm	
Circunferencia de Músculo del Brazo	25.7 cm	
ACT/MLGTBW/FFM	74.1 %	

Reactancia

	BD	$_{\mathrm{BI}}$	TR	PD	$_{\mathrm{PI}}$
$\mathbf{Xc}(\Omega)$ 5 kHz	12.0	11.6	2.1	9.0	8.8
Xc (Ω) 5 kHz 50 kHz 250 kHz	26.2	25.0	2.3	19.8	19.1
250 kHz	23.3	21.6	2.4	13.3	13.9

Ángulo de Fase Corporal Total-

4.	.3	
Ø (°) 50 kHz BD BI 50 d.1 55 d.1		

Impedance

	BD	BI	TR	PD	PΙ
$ \begin{array}{ccc} \boldsymbol{Z}(\Omega) & 1\mathrm{kHz} \\ & 5\mathrm{kHz} \\ & 50\mathrm{kHz} \\ & 250\mathrm{kHz} \\ & 500\mathrm{kHz} \\ & 1000\mathrm{kHz} \end{array} $	379.6	392.7	26.8	306.8	316.1
$5\mathrm{kHz}$	373.1	385.4	25.7	303.0	314.1
$50\mathrm{kHz}$	337.2	352.5	23.0	282.3	289.8
250 kHz	307.9	322.9	20.4	263.3	272.7
500 kHz	297.4	311.5	19.1	258.1	267.8
$1000\mathrm{kHz}$	286.4	297.4	17.0	254.5	264.0

Copyright ©1996~ by InBody Co., Ltd. All rights reserved. BR-Spanish(mexico)-00-B-140128